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ABSTRACT 
 
In late 2001 the BioMOBY project was initiated with the goal of 
producing an open-source, simple, extensible platform to enable 
the discovery, representation, integration, and retrieval of 
biological data from widely disparate data hosts and analysis 
services. An early prototype, based on a web-services paradigm 
(MOBY-S), but using a novel ontology-aware registry system, 
was deployed and tested throughout 2002. Approximately 12 
retrieval and analysis services were constructed spanning four 
institutions in Canada and the United States. The strengths and 
weaknesses of the prototype were evaluated and from this a 
more comprehensive and powerful API was written.  The most 
significant changes affected data modeling, with the new API 
requiring strict adherence to a hierarchical object structure 
ontology. A compliant registry system and associated 
client/server side libraries were published in early 2003, and 
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currently the registry is host to approximately 20 services in 
Canada, the United States, and Europe, and is expanding at the 
rate of approximately one service per day.  In parallel with the 
web-services based approach, a concurrent branch of the 
BioMOBY project (S-MOBY) was established to examine a 
semantic-web approach to biological data discovery and 
integration.  We anticipate being able to compare these two 
approaches on identical problem-sets in 2004. 
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1. INTRODUCTION 
 

The scope of data required by biologists in their day-to-
day analyses is extensive and ever expanding.  Although a 
novel biological discovery may be highly specific, even 
relating to a single cell within a single species, that 
conclusion cannot be drawn without first considering a 
vast array of diverse information. This traditionally 
included factors such as the biochemical networks within 
the cell, the interaction of that cell with its neighbouring 
cells, the global state of health of the organism, its genetic 
background, and potential environmental effects such as 
light, temperature, or toxins.  However, the past decade 
has seen the development of new high-throughput 
methodologies for sequencing, proteomics, and gene 
expression analysis, all of which produce data of dubious 
quality that must be thoroughly validated against existing 
biological knowledge prior to applying it to novel 
assertions. Even physical geographic location information 
is now used as a source of data to analyze and monitor the 
effects of environmental toxins or disease outbreaks [5].  
All of these different types of data may play a role in even 
the most straightforward biological assay. 
 

The difficulty of assimilating this data is exacerbated in 
that much of the data under consideration is derived from 
disparate and foreign species. Data from model organisms 
are commonly used to generate hypothesis about foreign 
systems, on the assumption that most biological processes 
are shared between even distantly related organisms. 
Unfortunately, mapping of hypotheses and observations 
between species is difficult to achieve de novo.  For 
example, mutants in the Wingless (Wg) gene of 
Drosophila result in flies lacking wings [13] while altered 
expression of the human homologue of this gene, WNT1, 
is associated with a variety of cancers [4]. In this case, 
despite the dissimilar biological phenomena observed, the 
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relationship between Wg and WNT1 can be discovered 
through a simple Google search [9]; the Wingless/WNT 
pathway has been extensively studied and is described in 
detail on many web pages, and is thus available to search 
engines.  However, novel biological concepts will not be 
described in web pages and thus are not revealed by 
Google searches.  The information required to derive 
these novel assertions is likely stored in highly 
specialized, domain-specific databases whose search 
interfaces are similarly domain-specific and self-
referential.  As such, discovery is thwarted by the absence 
of tools enabling biologists to non-deterministically 
follow seemingly tangential relationships in the global 
data-space. 
  
The objective of the BioMOBY project is to provide an 
architecture through which existing and new biological 
data hosts can:  
 

• Exchange common data representation formats to 
assist in data integration; i.e., a shared syntax 
amenable to an identifiable and maintainable open-
source code base. 

 

• Establish a mechanism for machine-discernable 
meaning or context for data and services; i.e., a shared 
semantic for clients and providers. 

 

• Provide both manual and automated methods for 
discovering related data sets and services; i.e., a 
discovery infrastructure to allow interoperability via a 
shared semantic on top of a shared syntax. 

 

2. MATERIALS AND METHODS 
 

The existing MOBY-S Central registry server is a Perl 
CGI script accessible via SOAP messaging.  The interface 
is served by an Apache webserver, with service-instance 
and ontology data being stored in a mySQL database.  
MOBY-S Central is hosted on a Sun Enterprise 220R with 
two 18GB SCSI drives in a mirrored configuration.  A full 
description of the API, including all code, documentation, 
examples, mailing lists, and archives are freely accessible 
from the project homepage: http://www.biomoby.org. 
 

3. THE BIOMOBY PROJECT 
 

3.1 Lessons from the MOBY-S prototype 
and use-case analysis 
 
Several important observations during the prototype phase 
of the project [22] influenced the design of the stable v0.5 
API.  Perhaps most surprising was that the registry, on its 
own, contributed very little to interoperability and is 
perhaps the least important component in a data 
integration system.  In fact, the registry code itself was 

developed in a matter of weeks, and changed very little 
between the prototype stage and the new stable API.   It 
failed, however, to find services that, in principle, could 
have operated on certain query data-types due to the 
difficulty of automating even the smallest degree of data 
restructuring. Furthermore, since the registry is not 
involved in service transactions, it is pointless to build 
complex logic for data transformation into the Registry 
itself, since this logic would then have to be duplicated in 
both the client and the service.  Thus it was clear that the 
problem of interoperability lies less in service discovery, 
than in data description. 
   
The prototype methodology of defining arbitrary data 
types with XML Schema also thwarted interoperability.  
Though the prototype used an ontology of data Classes, 
the problem of transformation from one data-type to 
another to match the interface of the chosen service 
remained a near-insurmountable burden; the 
decomposition of an object into sensible component parts 
was not amenable to automation, since the original 
specification lacked rules governing the XML structure 
and element names.   As such, certain types of services 
were impossible to build under the prototype system.  For 
example, statistical analysis services that would consume 
primitive data-types, like Integers, were essentially 
impossible to build since Integers were always embedded 
within more complex object types and could not reliably 
be identified and isolated from these objects.  Thus it was 
clear that more effort should be focused on the data 
modeling, and that XML schema should be abandoned in 
favour of a more descriptive, ontology based, mechanism 
for defining data structures.   
 
A final lesson arose through both direct communication 
with scientists, as well as a structured Use Case analysis 
[12] ñ that there was no requirement for the final product 
to be fully automated.  On the contrary, feedback from the 
scientific community gave clear indication that a fully 
automated discovery/analysis methodology would be 
undesirable, and similarly every Use Case that was 
submitted involved a human operator.  Though making the 
final system as automated as possible is still a worthwhile 
goal, the allowance for human intervention in the process 
greatly simplifies BioMOBY goal of creating a broad-
based data integration methodology and platform. 
 

3.2 Two approaches 
 

To begin, it is useful to compare and contrast the 
architectural demands that are relevant in two differing 
user settings.  In the first setting, the user is interested in 
assimilating knowledge from diverse and heterogeneous 
data sources and invoking a broad range of services.  
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Information and services may be ephemeral; service 
specifications and requirements may change without prior 
approval of an indeterminate user base; and it may be 
technically or culturally difficult to establish a broad 
consensus of meaning or context.  This setting is similar to 
the World Wide Web in general, where ëserviceí is a 
generic term for any dereferencing operation on a URI. 
 

In the second setting, the user is likewise interested in 
assimilating knowledge from diverse and heterogeneous 
data sources and invoking a broad range of services.  But 
information structure, if not content, is relatively stable 
and accessible via reliable interfaces.  Interface 
specifications have long-term persistence and established 
mechanisms for propagating change; technical and 
cultural practices encourage a consensus of meaning and 
context.  An example would be a consortium of 
automotive manufactures with thousands of subscribed 
suppliers who seek an internet-based, competitive e-
market for the just-in-time ordering and delivery of 
automotive parts. 
 

Bioinformatics encompasses both user settings. The first 
is amenable to a semantic web approach for navigating the 
web where ìanyone Ö [can] say anything about anythingî 
[1]; the second is amenable to a web services approach, 
with the desired stability and efficiency of a 
publish/subscribe model.  BioMOBY is examining 
technologies for both settings, with the ultimate goal of 
providing a single, unified platform balancing the 
advantages and disadvantages of each. 
 

3.2.1 S-MOBY:  the semantic web approach 
 

Under the semantic web paradigm, data and service 
providers make minimal assumptions about how their data 
or services may be used.  Data and services have publicly 
accessible properties which amount to a list of statements 
or assertions.  Others are free to publish their own 
assertions concerning uniquely identified resources in the 
global information space, including possibly contradictory 
assertions, just as anyone can create hyperlinks to a URL 
without the ownerís knowledge or consent. 
 

The S-MOBY (Semantic-MOBY) branch of BioMOBY 
will encompass a minimal set of reserved-word assertions 
to allow the construction of ontological relationships.  
These play a role similar to interfaces for services or 
schematic specification of data elements, in the sense that 
they provide a means for expressive description of validity 
constraints on message content or information 
requirements of a given context.  A significant difference 

of the semantic web languages over more traditional 
constructs for the purposes of type-checking and 
validation is that one is not necessarily bound to a 
prescribed parameter list, but relevant ìparametersî can 
be extracted from stated properties at service invocation. 
 

Data definitions and services are ìadvertisedî by simply 
publishing a web page of properties.  This allows the 
creation of a web of ontologies, whereby data and services 
are defined by stating a series of assertive relationships 
with other data and services on the web.  This web of 
ontologies is open and accessible to a free market of 
indexing services.  These indexing servicesóessentially 
semantically-aware, Google-like enginesócomprise the 
discovery infrastructure.  Optional, pro-active, registration 
is of course completely feasible.  Clients use the same 
public web of ontologies to encode the data they send, 
choose a service, and interpret the data received.  Thus 
common ìmeaningî between client and provider is 
established via loosely-coupled semantic negotiation on 
the transactions of: i) send data (assertions and values); ii) 
accept/reject (i.e., understand/do not understand) the 
invocation request; iii) return data (assertions and values); 
iv) accept/reject (i.e., understand/do not understand) the 
response. 
 

This division of labor between data and service self-
description, discovery, and invocation is aimed at building 
a discovery and invocation infrastructure sufficiently 
robust to handle the weight of a semantically rich, 
decentralized, environment. 
 

3.2.2 MOBY-S: the web services approach 
 
Under the web-service paradigm, data hosts and analysis 
services publish their ability to transact data services, 
including the details of the interface, in machine-readable 
format in a centralized registry.  Client programs query 
the registry in various ways to discover services of 
interest, and execution of the service can be automated.  
An example of this paradigm is the UDDI registry, which 
has a highly business-oriented API, and may be becoming 
the standard for B2B transactions [18]. 
 
The MOBY-S (MOBY-Services) branch of the 
BioMOBY project is another example of a web-services 
approach.  Unlike UDDI, the MOBY-S registry uses 
ontologies to determine the structure and relationships 
between data-types and services, leveraging this to 
enhance service discovery.  Data Classes in MOBY-S are 
described in Resource Description Framework (RDF)-like 
graphs, and are typically represented as an XML 
serialization of that graph.  Since every sub-component of 
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a Class is itself defined in the ontology, the problem of 
data-type decomposition and rearrangement (discussed in 
section 5.6 and 5.8) becomes trivial.  Further, since the 
relationship between input and output data-types are 
ontologically defined, the registry can also be used to 
discover service "pipelines" in which the output of one 
service is directly applied as input to the next service. 
 

4. S-MOBY: SEMANTIC MOBY 
 
The architectural design specifications for S-MOBY are 
still under development and shall be published elsewhere.   
Here, we describe some of the motivation for the design 
and outline its general direction. 
 
4.1 A RESTful world 
 
In a ìclosed-worldî, such as the traditional OO (Object 
Oriented) development/usage environment of compiled 
and linked modules, a development group can employ a 
set of best practices to maintain and evolve code.  
Encapsulation, strict interface/implementation separation, 
publishing interface descriptions, and a judicious use of 
deprecation are all practices that can aid maintainability 
and evolvabilty.  Code discipline is required because the 
power of interfaces lies in their ability to push run-time 
errors to compile time: classes that do not implement 
method signatures as declared are rejected by the compiler 
at a well-defined point in the development cycle, and thus 
compilers use failure to enforce interface contracts.  The 
advantage of this is encapsulation with all its benefits, but 
the cost is a fragility and rigidity placed on interfaces and 
their sub-classes.  Changing an interface, for example by 
adding, deleting, or changing a method signature, 
simultaneously invalidates all dependent implementations 
upon recompilation.  The vulnerability of a system to 
interface mutability is evident even in non-OO settings: 
for example changing the syntax requirement on an HTTP 
GET query string can simultaneously break thousands of 
third-party scripts accessing the site [15].  This fragility of 
the GET query string syntax to mutability makes it 
operationally non-scalable. 
 
An alternative to the interface mutability problem is 
addressed in embracing the realities of an ìopen worldî; a 
world where change is as ubiquitous as consensus is 
elusive. Architectural emphasis is placed on achieving 
robustness in light of partial and/or asymmetrical and 
changing information. This is often done through various 
mechanisms of loose-coupling and late-binding. An 
example of late-binding is when a provider examines the 
properties of a service call (including its input parameters) 
at invocation and at that time determines suitability. The 
key to robustness is not that fragility is reduced by 

delaying validity checking to invocation time per se, but 
that suitability of purpose may be determined at 
invocation in ways that may not be determinable at a prior 
registration time. 
 
The open world is exemplified in the web itself.  S-
MOBY relies heavily on the web as an architectural 
paradigm for an open world problem space [2, 19].  This 
means universal resource identification, or the use of 
URIsóand more specifically URLsófor data and service 
definitions; the use of hyperlinking as a method for the 
construction of complex resources from other resources; 
the exchange of representations of resources via the 
dereferencing of URIs; and the use of a minimal method 
set such as used by HTTP. S-MOBY is not tied to HTTP, 
though it does recognize it as the de facto protocol of the 
web. These characteristics of the web are identified as the 
architectural style REST (Representational State Transfer 
[6]). Key to this architectural style is the treatment of both 
data and services as resources under a universal locating 
scheme. 
 
4.2 Web of ontologies 
 
To build resources, that is, to allow data and services to 
define themselves via a set of properties or assertions, S-
MOBY uses a Resource Description Framework (RDF 
[20]) based technology. S-MOBY seeks to place 
BioMOBY within the web itself, and not merely to use the 
web as a messaging layer. Thus resource descriptions will 
ascribe to W3 standards (e.g., RDF/RDF-S/Web Ontology 
Languages (OWL)[21]) and are fully available to 
BioMOBY-ignorant manipulation. While the scope of 
BioMOBY is significantly less than the semantic web 
(BioMOBY aims to achieve a shared syntax, shared 
semantic, and discovery infrastructure suitable for 
bioinformatics), the aim of placing S-MOBY within the 
web means that we seek a minimally enabling technology 
so as to maximize its interoperability with other efforts.  
Most notably are efforts in ontology construction and 
description logics (e.g. those of Borgida, A. [3]; 
Horrocks, I. [10] Wroe C, et al. [23]). This means that we 
evaluate the W3 stack of technologies (RDF, RDF-S, 
OWL-Lite, OWL-DL, OWL-Full) against S-MOBYís 
requirements [14] choosing the least complicated 
technology and then supporting it in full.  A subsumption 
requirementóand many othersóargue for the use of 
RDF-S over RDF, and similarly equivalency argues for 
OWL-Lite over RDF-S. The guarantee of maximum 
expressiveness and computational completeness of OWL-
Lite and OWL-DL is likely to preclude OWL-Full (where 
there is no guarantee). Thus a decision between OWL-Lite 
and OWL-DL will be based primarily on an evaluation of 
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the necessity for the arbitrary cardinality and Boolean 
expressions of OWL-DL. 
 
Given a minimally enabling technology, data and services 
describe themselves in RDF-based documents; documents 
which include sanctioning, subsumption, and equivalency 
assertions. The web of these hyperlinked documents 
creates a web of ontologies. Hyperlinking, as a key 
RESTful feature of how data and services define 
themselves, allows certain sites to become de facto 
community standards. For example, SGD 
(www.yeastgenome.org), TAIR (www.arabidopsis.org), 
and WormBase (www.wormbase.org) may each offer 
community-specific data definitions and services for 
yeast, Arabidopsis, and C. elegans respectively, while still 
sharing definitions and not precluding others from 
extending them. At any one time, more or less of the 
larger ontology is available to reasoning engines.  These 
reasoning engines comprise the indexing algorithms for 
the discovery servers. 
 

4.3 Discovery in S-MOBY 
 
Discovery servers allow clients to engage providers by 
returning URLs for services that meet the clientsí domain, 
range, and description criteria.  Because of 
incompleteness and inconsistencies inherent in any open 
world ontology, discovery servers do not guarantee that 
all possible matches are returned.  Neither do they even 
guarantee that a returned match is valid.  What they 
should do is return matches that were valid at the time 
they reasoned on their traversal or caching of the web.  In 
this manner, they act as semantically-aware search 
engines, yet are susceptible to the problems of stale caches 
and 404 errors like current text-based search engines.  
Users may choose competitively between discovery 
services based on their reliability and suitability for 
purpose.  BioMOBY will provide one such service, which 
will operationally satisfy the final combination of S-
MOBY and MOBY-S functional constraints. 
 

4.4 Semantic negotiation 
 

Meaning is established at the transaction level.  Any 
individual is free to publish an RDF-based definition 
document describing a data or service type (e.g., 
MySequence, or MyBLAST).  Common vocabularies are 
boot-strapped by community authorities, such as SGD, 
TAIR, and WormBase. Clients and providers 
communicate through this middle-layer vocabulary, 
resorting to more specific, less common vocabulariesó
i.e., jargonóas demanded by the trade-off between 
exactness and clarity.  Because hyperlinks are static, one-
way links, predicates such as rdfs:subClassOf between 
subject and object resources are simply assertions, which 

may or may not be true at the time of dereferencing.   
Thus as clients and providers map and unmap their private 
data to and from public ontologies, their level of 
confidence in this mapping is related to the stability and 
authenticity of the transaction participants.  This 
segregates issues of authenticity out of semantic 
negotiation per se, allowing them to be addressed either 
with additional RDF constructs or with completely 
different technologies. 
 

4.5 Status of S-MOBY 
 

As part of BioMOBY, S-MOBY has published Use Case, 
a Technology Assessment, and Requirements documents 
available at www.biomoby.org.  We are currently writing 
the Design document, and are on schedule for the 
deployment of a prototypical implementation by Fall, 
2004. 
 

5. MOBY-S: MOBY SERVICES 
 

MOBY-S extends the traditional web-services paradigm 
by applying ontologies to both the data, and the 
description of the transformation applied to the data 
during service execution, thus allowing the registry to 
analyze ìintentî of the incoming query, and in so doing 
enhance the number of services discovered. 
 
5.1 The MOBY-S API 
 
The data-type (Class) ontology consists of nodes 
representing various data Classes, and vertices 
representing one of three relationship types ñ "ISA", 
"HASA", and "HAS" (Figure 1).  These are stored in a 
relational database in practice, but may also be 
represented as an RDF document.  The ISA relationship 
indicates that, in the subject-predicate-object assertion, the 
subject Class inherits from the object Class 
(DNA_Sequence ISA Nucleotide_Sequence); all 
attributes of the latter are present in the former.  The 
HASA and HAS relationships indicate a container-type 
association between the subject and object; HASA 
indicates a cardinality of "one", while HAS indicates a 
cardinality of "one or more".  It is through these latter two 
relationships that MOBY-S objects can derive additional 
complexity.  While the ISA inheritance alone does not 
alter the "structure" of the Class, it does change the 
semantic meaning of the data contained by that class to be 
of a more specific type.  Conversely, HASA and HAS 
relationships allow the derivation of a new Class which 
both inherits from a more basic Class, and extends that 
Class by encapsulating other Class types in one or more 
copies.   
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text/plain 
text/html 
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text/base64 ISA base64_gifISA 

 
Figure 1. A portion of the RDF graph of  MOBY-S Classes. All 
objects inherit directly or indirectly from the base ìObjectî 
Class via ISA relationships, and complex Classes are derived 
through combinatorial  HAS and HASA relationships. 
 
In BioMOBY, data "entities" (an "entity" is any piece of 
data that can be identified by a single ID number) are cast 
into one Class or another depending on what subset of the 
"entity" is desired at any given time.  As shown in Figure 
1, all objects are rooted in the base class "Object" by ISA 
relationships. 
 
The RDF Class definition is serialized into XML for the 
purpose of service transaction.  The base Class "Object" 
has a very simple XML structure.  It consists of a single 
element, named according to the Class, and three 
attributes, only two of which ñ "namespace" and "id" - are 
required: 
 

 <Object namespace=" " id=" "/>.   
 
The third, optional, attribute is named "articleName", and 
is used when a service requires named inputs, and/or to 
identify different sub-components of complex Classes, as 
discussed below.   
 
The "namespace" and "id" attributes together are 
sufficient to identify any data entity on the Internet, and 
combined with the Class name, form the "MOBY-S 
Triple".  The MOBY-S Triple thus purports to carry three 
crucial pieces of information.  The identifier for a piece of 
data, the naming scheme under which that identifier 
should be interpreted, and the Class into which the data 
referred to by the identifier is going to be cast.  For 
example: 
 
     <Object namespace=íNCBI_gií id=í163483í/> 
 
refers to the record ë163483í within NCBIís gi 
namespace, and we are casting this record as a base 
Object (i.e. just the identifier).  All namespaces are 

defined by a controlled vocabulary based on the Gene 
Ontology Cross-reference Abbreviations [7]. 
 
While conceptually similar to the Life Sciences Identifier 
(LSID [11]) in its intent, the MOBY-S Triple differs from 
the LSID in a number of ways.  Most importantly, LSID's 
are meant to be completely opaque until they are resolved.  
As such, it is not possible to determine what "type" of data 
an LSID represents via simple examination of the LSID 
URI string. Clearly, however, individual web-service 
providers will only be capable of operating on certain 
types of data.  Given this limitation, and since LSID's are 
not yet widely used, with few public LSID resolver 
services, it is impractical at this time for the BioMOBY 
system to be required to be dependent on LSID resolution.  
Thus, the "namespace" component of the Triple defines 
the naming system (~data type) within which the "id" is 
valid, and the two are always passed as a unit.  Note that 
there is a potential pitfall to this approach.   
 
It is only by convention that most data hosts associate 
particular identifier namespaces with specific data types, 
but this is not enforceable, and in some cases already 
breaks down.  For example, the "gi" namespace from 
NCBI contains the identifiers for records of three 
conceptually different data types: DNA, RNA, and Amino 
Acid sequence.  Thus the moby:NCBI_gi namespace 
alone is insufficient to precisely define the data-type that 
the Triple refers to.  In this sense, the MOBY-S Triple is 
not as powerful as the LSID/Resolver system.  
Nevertheless, like the LSID, the Triple is sufficient to 
avoid naming clashes, a critical achievement for 
successful data integration [16].  Moreover, there is little 
fundamental difference between the two approaches, thus 
as LSID's become more widely accepted it is possible that 
MOBY-S will adopt the LSID standard in place of or as 
well as the namespace/id tuple.  Indeed, the MOBY-S 
Central registry internally represents all Class, Service, 
and Namespace identifiers as LSIDís, and these LSIDís 
may be used in registry queries. In addition, we provide an 
LSID resolver providing metadata for LSIDís representing 
MOBY-S service instances, so there is already extensive 
cooperation between these two projects. 
 
Though it is not pre-defined, there is clearly a relationship 
between a namespace, and the subset of Classes into 
which that data-type may be cast.  A PubMed identifier 
might be cast as a Citation object, but could not (sensibly) 
be cast as a DNA Sequence object because the data 
necessary to create a DNA Sequence object does not exist 
in a PubMed record.  In contrast, an NCBI_gi identifier 
could be cast as either a Sequence object, or a Citation 
object, since most Genbank records also contain 
authorship information in the submitter fields. This 
flexibility allows a highly modularized suite of services to 
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be built, where only certain fields of information are 
queried/retrieved during a service transaction. 
 
5.2 Primitives in MOBY-S 
 
The simple data objects discussed so far are of limited 
value.  Clearly it is desirable to pass more complex data 
along with the identifiers.  As a first step, primitive data-
types such as String, Integer, and Float are cast into their 
own MOBY-S Classes, inheriting directly from base 
Object, with no HASA relationship to any other Class.  
These primitive Classes (and their direct descendents) are 
the only object Classes allowed to have Text or CDATA 
node content in their XML representation.  As such, any 
data content in a serialized object that is not itself an 
identifier will appear in one of these types of nodes.  Since 
the Class name itself ("String", "Integer", etc) is not 
indicative of the ìintentî or ìmeaningî of the content, the 
a human-readable tag "articleName" is added to the 
MOBY-S Triple.  Thus the length of a VirtualSequence is 
indicated in the Integer element with the articleName 
"Length" (Figure 2).   
 
Structuring the data this way provides a great deal more 
flexibility in service provision, as discussed in section 5.6.  
In addition, a set of derived primitives have now been 
defined that can be associated with particular types of 
viewers.  For example, images may be passed in any 
inheriting from ìbase64_encoded_imageî (Figure 1), or 
HTML markup may be rendered from any descendent of 
the ìtext/htmlî Class (which itself inherits from 
ìtext/plainî, and thus may also be passed to a plaintext 
renderer if an HTML renderer is not available).  This 
greatly simplifies client design, since the client need not 
be aware of every possible data-type, and have specific 
rendering engines for each. 
 

<String namespace=' ' id=' '/> <Object namespace='NCBI_gi' id='163483 '/> <Integer namespace=' ' id=' '/>

<VirtualSequence namespace='NCBI_gi' id='163483'>
    <Integer namespace='' id='' articleName='Length'>

975
    </Integer>
</VirtualSequence>

<NucleotideSequence namespace='NCBI_gi' id='163483'>
    <Integer namespace='' id='' articleName='Length'>
              975
    </Integer>
    <String namespace='' id='' articleName='Sequence'>
              ATGG...
     </String>
</NucleotideSequence>

ISA ISA

ISA

ISA

HASA

HASA

 
 
 
Figure 2.  The XML serialization of a portion of the RDF graph 
in Figure 1 showing how HAS and HASA container-
relationships affect the serialized structure of an object 

5.3 Building complex Classes in MOBY-S 
 

Although every MOBY-S Class must have an ISA 
relationship (inheriting from the base Object Class 
directly or indirectly), this only guarantees that every 
object has a namespace and id component.  Complex 
Classes can be built through the HASA and HAS 
relationship types that allow embedded Classes.  Figure 2 
shows the XML structures corresponding to a few objects 
in the sequence hierarchy of object Classes, described in 
Figure 1.  Virtual Sequence is in an ISA relationship with 
the root Object Class, and in a HASA relationship with 
the Integer Class.  The resulting XML reveals an Integer 
object embedded within the VirtualSequence object.  A 
more complex object, NucleotideSequence is derived 
from VirtualSequence (ISA VirtualSequence) but adds an 
additional String component (HASA String). 
 
5.4 Cross-references in MOBY-S 
 
To enhance integration of disparate data hosts and 
services, an additional block of XML is allowed in every 
data Class ñ the CrossReference block.  Cross-references 
in MOBY-S are commonly provided in the form of  base  
ìObjectî Class data, acting as pointers to external data 
entities.  This allows the data provider, as the presumptive 
expert, to assume the responsibility of assisting a client in 
discovery of related pieces of information rather than 
placing that burden on the client-side.  This is critical in 
light of the interdisciplinary nature of MOBY-S 
integrationand e-science in general.   A user may not have 
the contextual or background knowledge necessary to 
interpret the data provided, or make sensible ìnext stepî 
choices [8].  Thus, the service provider can offer guidance 
by providing a rich set of cross-references along with their 
data output. 
 

An Object may contain as many Cross-references as the 
service provider sees fit, and they may represent not only 
synonyms for the Object, but also tangentially related 
pieces of data.  In addition, individual sub-components of 
an Object may carry their own cross-reference blocks.  
Since cross-references themselves are valid MOBY-S 
Objects, they may be used verbatim to discover services 
providing or operating on related data.  Thus the MOBY-
S data-representation system itself provides for an 
extensive degree of data integration and interoperability. 
 

5.5 The scope of MOBY-S 
 
Since MOBY-S Objects, in their most simplistic form, 
consist only of identifiers, there is no inherent limitation 
of MOBY-S to biological data types.  As such, it should 
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be possible to set up services that move between 
traditional biological data and any other data type.  For 
example, one could envision services that consume allele 
names, and return geographic distribution information, or 
services that match DNA sequences from crime scenes 
with ìmug shotsî or fingerprint data.  The MOBY-S 
approach could thus be applied to a wide range of 
common data discovery and data-sharing problems, 
including biological/medical; environmental; business, 
civil, criminal and patent law; or even policing and 
terrorism. 
 

5.6 Services under MOBY-S 
 

In MOBY-S, service providers accept and respond to 
queries through SOAP-RPC.  Service interfaces are 
minimally defined by the Service Signature: [Input Class], 
Transformation Type, [Output Class], URL.   Input and 
Output Classes may be part of the MOBY-S Class 
ontology, or may be LSID's pointing to data 
classifications external to the BioMOBY project.  In 
addition, either the Input or Output Class may be null, 
allowing registration (Output null) or simple retrieval 
(Input null) services to be created.  The service signature 
may also be more complex, where the Input and/or Output 
is a combination of Classes and/or Class Collections 
(lists).  In addition, unlike the prototype API, additional 
parameters required or provided by the service are 
included as part of the service signature; these 
ìsecondaryî parameters take the form of named primitive 
arguments that may easily be translated into, for example, 
HTML form fields.   
The Service Ontology governs the ìTransformation Typeî 
component of the Service Signature.  Like the Class 
Ontology, the Service Ontology is a hierarchical graph of 
data transformation service types, joined by ISA 
relationships, and rooted in a base ìServiceî Class.  The 
primitive Transformation Type categories of Retrieval, 
Registration, Analysis, and Parsing make up the main 
branches of the Service Ontology, and more precise 
transformation types (e.g. tblastx, or SmithWaterman) 
inherit from these.  
 

To build a MOBY-S-compliant service, the service 
provider simply chooses appropriate input and output data 
Classes from the ontology, identifies what other 
parameters are required to transact the service, and selects 
or adds a Service Ontology term to describe his 
Transformation Type.  This signature is then registered as 
a new Service Instance in the MOBY-S Central registry 
(described below), along with a unique name for this 
service and a URI indicating the identity of the service 
provider.  The script providing the service must accept 
SOAP-RPC calls containing serialized data according to 

its registered Input data Class.  Since the data Classes 
exist in an inheritance relationship with one another in one 
or more ontologies, it is impossible for the service 
provider to know which Class Ontology has been used to 
declare this object as being ìvalidî, thus the service 
should simply parse the object on the assumption that it is, 
or inherits from, the expected Class, and extract the 
required information.  The service should fail if the Object 
is not compliant with the Input Class registered in its 
service signature.  Similarly, the service provider is not 
constrained to generating only the Output Class it has 
registered in MOBY-S Central.  If sufficient information 
exists to produce a more complex child Class the service 
provider is encouraged to do so.  This should be 
transparent on the client side, since a client program 
should similarly not validate the data types it is receiving 
unless it is sufficiently complex to do so. 
 

The power gained by this approach is remarkable.  On the 
client side, an in-hand data object may be passed to any 
service that accepts that object type, or any parent object 
type, in order to transact the service.  Similarly, a service 
may register itself as providing a more basal data-type 
than it actually is able to generate in order to be flexible in 
its output, yet accurate in its service signature. 
 

5.6.1 Service providers ìcode of conductî 
 

To achieve the desired level of interoperability while 
maintaining the richness of service provision, there are 
some guidelines that should be followed by MOBY-S 
service providers: 
 

• Avoid creating new data Classes.  If it is possible to 
represent your data with an existing class, or 
combination of classes, do so.  This helps assure that 
services exist that will take your output data Class as 
their input. 

 

• Avoid creating unnecessarily complex data types.  
The MOBY-S strategy is to pass only the information 
requested by the client, and to prefer ìmodularî data 
retrieval over complex data-retrieval.  Complexity 
should be represented in cross-references rather than 
Class structures where possible. 

 

• Provide as many cross-references as possible in the 
CrossReference XML block.  This is key to enhancing 
data integration. 

 

• Do not change your interface.  Although it is 
discouraged, it is inevitable that some users will hard-
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code their data collection scripts to your published 
interface.  Thus, it is better to create a new service 
than to change an existing one. 

 

• If you must change your interface, de-register and 
re-register it in the registry.  Not doing so defeats 
the purpose of providing MOBY-S-compliant 
services! 

 
5.7 The MOBY-S Central registry 
 
The MOBY-S Central registry is surprisingly simplistic ñ 
it allows registration, deregistration, and discovery of 
Service Instances via their Service Signatures, and 
provides a basic interface for manipulating and querying 
the Class, Service, and Namespace Ontologies.  Service 
discovery is accomplished by creating a full or partial 
Service Signature, representing the desired Service 
Instance, and comparing that to the signatures of 
registered services.  This is simplified by the fact that the 
input and output data types are strictly controlled by the 
Class Ontologies, thus the matching of a partial Service 
Signature can be done quickly and accurately.   
 
In addition to the service signature, the service provider 
may indicate to MOBY-S Central that they are 
ìauthoritativeî for the service they are registering.  This is 
a non-validated way of indicating that the service provider 
believes that they provide more accurate or up-to-date 
data than service providers who do not claim to be 
authoritative.  For example, an authoritative service 
provider may be the canonical source of a particular data-
set used during service provision, or the 
designer/maintainer of an algorithm used to execute the 
data analysis and transformation.  When querying the 
registry, client programs may request that only 
authoritative services are discovered, or they can ignore 
the authoritative flag and discover all service providers 
that can operate on their input data-types. 
 
Finally, the behaviour of MOBY-S Central can be 
configured such that it includes information from the 
Class and Service Ontologies during the lookup process.  
As such, the Client itself need not traverse the Object 
ontology; it need only pass the Object Class name to the 
registry and request that the registry discover services able 
to act on the in-hand data-type, or any parent data type in 
the ontology.  Similarly, the Client may be conservative in 
its request for a particular Transformation Type, and let 
the Registry traverse the Service Ontology along all child 
types to discover more specific categories within that 
Transformation Type. 

Upon service discovery, a copy of the full Service 
Signature is presented to the client.  This carries sufficient 
information to allow automated service execution.  
However, an additional procedure call is available at 
MOBY-S Central that will return a WSDL-like document 
that can be used to create ìstubsî on the client side.  The 
WSDL provided by MOBY-S Central is not entirely 
valid; the service provider and client are both allowed to 
pass more complex data-types than advertised in the 
registry, thus it is impossible, a priori, to describe the 
actual structure of the input and output data for a given 
service in a WSDL document. 
 

5.8 Clients under MOBY-S 
 
Since the complexity of service discovery and Ontology-
awareness is present in the Registry itself, MOBY-S 
Client programs may be trivially simplistic in their design, 
consisting of as few as ten lines of Perl code.  This 
architecture was intentional, as it was anticipated that 
MOBY-S Client code should be embedded within more 
complex applications, invisibly doing lookups and service 
executions in order to gather data for existing standalone 
or web-based programs such as ISYS, SRS, Genquire, 
Apollo, or any other program designed to display 
integrated data.   
 

However, not all object manipulation/interpretation can be 
accomplished by the registry. Class Ontology traversal in 
MOBY-S Central follows only ISA relationship types, 
ignoring HASA and HAS relationships.  As such, sub-
components of the data Class are not automatically 
included in the Service Signature search.  This minor 
limitation is, again, by design ñ the intention is that 
neither Client nor Service should be required to validate 
objects, and should always receive an acceptable Object 
without any additional manipulation.  If sub-components 
were included in the service search, it might then be 
necessary for a service to execute object decomposition in 
order to operate on incoming data.  As such, Object 
decomposition (if desired) must be done client-side.  
Since all Objects are either primitive, or composed of 
primitives, the difficulty of decomposing an Object into its 
component parts is negligible ñ every XML element 
inside of a serialized Class must, by definition, be a valid 
Class itself.  As such, even a simple client-side XML 
parser can decompose an Object and query the registry 
with any/all sub-components in order to discover all 
services able to operate on any piece of data within that 
Object. 
 

Finally, the Class Ontology simplifies client design in 
another way.  Since all input/output data types are 
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constrained to Class Ontology nodes, it is therefore the 
case that the output from one service may be directly 
applicable as the input to another service, allowing simple 
pipelining of multiple services into a workflow without 
intervening data rearrangements. 
 

5.9 Weaknesses of the MOBY-S approach 
 
There are notable weaknesses in the current MOBY-S 
approach.  Most apparent is that Transformation Types, 
although defined in the Service Ontology, are still 
described only in human-readable terms.  Machine-
readable service description is an extraordinarily difficult 
problem, and the BioMOBY project is maintaining 
contact with the myGrid project as they explore solutions 
to this problem [17].  A second weakness is that all cross-
references are treated equally under the current API.  As 
such, it is impossible to determine how 
directly/tangentially a cross-reference relates to the object 
in-hand.  Exploration into creation of a cross-reference 
relationship type ontology has been initiated.  Third, the 
use of the articleName attribute as a human readable 
description of the content of an object limits, somewhat, 
the automated interpretation of data.  Finally, MOBY-S 
does not circumvent the problem of service providers 
irresponsibly changing their interfaces without updating 
their MOBY-S registration, registering their interfaces 
inaccurately, or producing false or low-quality data.  All 
of these issues are actively being discussed among the 
BioMOBY developers and will be addressed in future API 
specifications. 

 
6.  CONCLUSION 
 
In the past two decades, the web has become an integral 
part of scientific research.  However, the enthusiasm of 
scientists to exploit this new and powerful tool to publish 
their data was not tempered with a well-planned data 
sharing architecture.  What resulted was a vast pool of 
highly specialized, disconnected websites and ever-
evolving database interfaces.  As researchers rush to take 
advantage of newly emerging technologies such as 
ontologies, web-services, and the semantic web, the 
BioMOBY project hopes to provide a simple and ready-
made platform to help scientists avoid repetition of these 
earlier mistakes.  We intend to unite the needs and skills 
of biologists with the foresight and planning of 
information scientists to ensure that both public and 
private research investment achieves its maximum benefit 
through the creation of a highly integrated global 
biological data space.  The BioMOBY project provides an 
extensible and flexible choice for data hosts and service 

providers to build such integrated systems with minimal 
effort and minimal disruption to their existing data 
provision activities. 
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