
Proceedings of the Virtual Conference on Genomics and Bioinformatics

 17

The BioMOBY Project Explores
Open-Source, Simple, Extensible
Protocols for Enabling Biological

Database Interoperability

1*Wilkinson, MD, 2Gessler, D, 2Farmer, A,
3Stein, L.

1Illuminae Media Bioinformatics Services

727 6th Ave. N., Saskatoon SK
Canada S7K 2S8

2National Center for Genome Resources
2935 Rodeo Park Drive East
Santa Fe, NM, USA 87505

3Cold Spring Harbor Laboratory
1Bungtown Rd.

Cold Spring Harbor, NY 11724

*Correspondence should be addressed to:

markw@illuminae.com
� (306) 373-3841

ABSTRACT

In late 2001 the BioMOBY project was initiated with the goal of
producing an open-source, simple, extensible platform to enable
the discovery, representation, integration, and retrieval of
biological data from widely disparate data hosts and analysis
services. An early prototype, based on a web-services paradigm
(MOBY-S), but using a novel ontology-aware registry system,
was deployed and tested throughout 2002. Approximately 12
retrieval and analysis services were constructed spanning four
institutions in Canada and the United States. The strengths and
weaknesses of the prototype were evaluated and from this a
more comprehensive and powerful API was written. The most
significant changes affected data modeling, with the new API
requiring strict adherence to a hierarchical object structure
ontology. A compliant registry system and associated
client/server side libraries were published in early 2003, and

Proc Virt Conf Genom and Bioinf (3):17-27
Print ISSN 1547-383X
Online ISSN 1547-7320
Copyright © 2003. All Rights Reserved
www.virtualgenomics.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not distributed for profit or commercial advantage.

currently the registry is host to approximately 20 services in
Canada, the United States, and Europe, and is expanding at the
rate of approximately one service per day. In parallel with the
web-services based approach, a concurrent branch of the
BioMOBY project (S-MOBY) was established to examine a
semantic-web approach to biological data discovery and
integration. We anticipate being able to compare these two
approaches on identical problem-sets in 2004.

CATEGORY

-Post-Genomic Management, Integration and Mining
-Software Application

Keywords: Integration, interoperability, web services,
BioMOBY, semantic web.

1. INTRODUCTION

The scope of data required by biologists in their day-to-
day analyses is extensive and ever expanding. Although a
novel biological discovery may be highly specific, even
relating to a single cell within a single species, that
conclusion cannot be drawn without first considering a
vast array of diverse information. This traditionally
included factors such as the biochemical networks within
the cell, the interaction of that cell with its neighbouring
cells, the global state of health of the organism, its genetic
background, and potential environmental effects such as
light, temperature, or toxins. However, the past decade
has seen the development of new high-throughput
methodologies for sequencing, proteomics, and gene
expression analysis, all of which produce data of dubious
quality that must be thoroughly validated against existing
biological knowledge prior to applying it to novel
assertions. Even physical geographic location information
is now used as a source of data to analyze and monitor the
effects of environmental toxins or disease outbreaks [5].
All of these different types of data may play a role in even
the most straightforward biological assay.

The difficulty of assimilating this data is exacerbated in
that much of the data under consideration is derived from
disparate and foreign species. Data from model organisms
are commonly used to generate hypothesis about foreign
systems, on the assumption that most biological processes
are shared between even distantly related organisms.
Unfortunately, mapping of hypotheses and observations
between species is difficult to achieve de novo. For
example, mutants in the Wingless (Wg) gene of
Drosophila result in flies lacking wings [13] while altered
expression of the human homologue of this gene, WNT1,
is associated with a variety of cancers [4]. In this case,
despite the dissimilar biological phenomena observed, the

Proceedings of the Virtual Conference on Genomics and Bioinformatics

 18

relationship between Wg and WNT1 can be discovered
through a simple Google search [9]; the Wingless/WNT
pathway has been extensively studied and is described in
detail on many web pages, and is thus available to search
engines. However, novel biological concepts will not be
described in web pages and thus are not revealed by
Google searches. The information required to derive
these novel assertions is likely stored in highly
specialized, domain-specific databases whose search
interfaces are similarly domain-specific and self-
referential. As such, discovery is thwarted by the absence
of tools enabling biologists to non-deterministically
follow seemingly tangential relationships in the global
data-space.

The objective of the BioMOBY project is to provide an
architecture through which existing and new biological
data hosts can:

• Exchange common data representation formats to
assist in data integration; i.e., a shared syntax
amenable to an identifiable and maintainable open-
source code base.

• Establish a mechanism for machine-discernable
meaning or context for data and services; i.e., a shared
semantic for clients and providers.

• Provide both manual and automated methods for
discovering related data sets and services; i.e., a
discovery infrastructure to allow interoperability via a
shared semantic on top of a shared syntax.

2. MATERIALS AND METHODS

The existing MOBY-S Central registry server is a Perl
CGI script accessible via SOAP messaging. The interface
is served by an Apache webserver, with service-instance
and ontology data being stored in a mySQL database.
MOBY-S Central is hosted on a Sun Enterprise 220R with
two 18GB SCSI drives in a mirrored configuration. A full
description of the API, including all code, documentation,
examples, mailing lists, and archives are freely accessible
from the project homepage: http://www.biomoby.org.

3. THE BIOMOBY PROJECT

3.1 Lessons from the MOBY-S prototype
and use-case analysis

Several important observations during the prototype phase
of the project [22] influenced the design of the stable v0.5
API. Perhaps most surprising was that the registry, on its
own, contributed very little to interoperability and is
perhaps the least important component in a data
integration system. In fact, the registry code itself was

developed in a matter of weeks, and changed very little
between the prototype stage and the new stable API. It
failed, however, to find services that, in principle, could
have operated on certain query data-types due to the
difficulty of automating even the smallest degree of data
restructuring. Furthermore, since the registry is not
involved in service transactions, it is pointless to build
complex logic for data transformation into the Registry
itself, since this logic would then have to be duplicated in
both the client and the service. Thus it was clear that the
problem of interoperability lies less in service discovery,
than in data description.

The prototype methodology of defining arbitrary data
types with XML Schema also thwarted interoperability.
Though the prototype used an ontology of data Classes,
the problem of transformation from one data-type to
another to match the interface of the chosen service
remained a near-insurmountable burden; the
decomposition of an object into sensible component parts
was not amenable to automation, since the original
specification lacked rules governing the XML structure
and element names. As such, certain types of services
were impossible to build under the prototype system. For
example, statistical analysis services that would consume
primitive data-types, like Integers, were essentially
impossible to build since Integers were always embedded
within more complex object types and could not reliably
be identified and isolated from these objects. Thus it was
clear that more effort should be focused on the data
modeling, and that XML schema should be abandoned in
favour of a more descriptive, ontology based, mechanism
for defining data structures.

A final lesson arose through both direct communication
with scientists, as well as a structured Use Case analysis
[12] ñ that there was no requirement for the final product
to be fully automated. On the contrary, feedback from the
scientific community gave clear indication that a fully
automated discovery/analysis methodology would be
undesirable, and similarly every Use Case that was
submitted involved a human operator. Though making the
final system as automated as possible is still a worthwhile
goal, the allowance for human intervention in the process
greatly simplifies BioMOBY goal of creating a broad-
based data integration methodology and platform.

3.2 Two approaches

To begin, it is useful to compare and contrast the
architectural demands that are relevant in two differing
user settings. In the first setting, the user is interested in
assimilating knowledge from diverse and heterogeneous
data sources and invoking a broad range of services.

Proceedings of the Virtual Conference on Genomics and Bioinformatics

 19

Information and services may be ephemeral; service
specifications and requirements may change without prior
approval of an indeterminate user base; and it may be
technically or culturally difficult to establish a broad
consensus of meaning or context. This setting is similar to
the World Wide Web in general, where ëserviceí is a
generic term for any dereferencing operation on a URI.

In the second setting, the user is likewise interested in
assimilating knowledge from diverse and heterogeneous
data sources and invoking a broad range of services. But
information structure, if not content, is relatively stable
and accessible via reliable interfaces. Interface
specifications have long-term persistence and established
mechanisms for propagating change; technical and
cultural practices encourage a consensus of meaning and
context. An example would be a consortium of
automotive manufactures with thousands of subscribed
suppliers who seek an internet-based, competitive e-
market for the just-in-time ordering and delivery of
automotive parts.

Bioinformatics encompasses both user settings. The first
is amenable to a semantic web approach for navigating the
web where ìanyone Ö [can] say anything about anythingî
[1]; the second is amenable to a web services approach,
with the desired stability and efficiency of a
publish/subscribe model. BioMOBY is examining
technologies for both settings, with the ultimate goal of
providing a single, unified platform balancing the
advantages and disadvantages of each.

3.2.1 S-MOBY: the semantic web approach

Under the semantic web paradigm, data and service
providers make minimal assumptions about how their data
or services may be used. Data and services have publicly
accessible properties which amount to a list of statements
or assertions. Others are free to publish their own
assertions concerning uniquely identified resources in the
global information space, including possibly contradictory
assertions, just as anyone can create hyperlinks to a URL
without the ownerís knowledge or consent.

The S-MOBY (Semantic-MOBY) branch of BioMOBY
will encompass a minimal set of reserved-word assertions
to allow the construction of ontological relationships.
These play a role similar to interfaces for services or
schematic specification of data elements, in the sense that
they provide a means for expressive description of validity
constraints on message content or information
requirements of a given context. A significant difference

of the semantic web languages over more traditional
constructs for the purposes of type-checking and
validation is that one is not necessarily bound to a
prescribed parameter list, but relevant ìparametersî can
be extracted from stated properties at service invocation.

Data definitions and services are ìadvertisedî by simply
publishing a web page of properties. This allows the
creation of a web of ontologies, whereby data and services
are defined by stating a series of assertive relationships
with other data and services on the web. This web of
ontologies is open and accessible to a free market of
indexing services. These indexing servicesóessentially
semantically-aware, Google-like enginesócomprise the
discovery infrastructure. Optional, pro-active, registration
is of course completely feasible. Clients use the same
public web of ontologies to encode the data they send,
choose a service, and interpret the data received. Thus
common ìmeaningî between client and provider is
established via loosely-coupled semantic negotiation on
the transactions of: i) send data (assertions and values); ii)
accept/reject (i.e., understand/do not understand) the
invocation request; iii) return data (assertions and values);
iv) accept/reject (i.e., understand/do not understand) the
response.

This division of labor between data and service self-
description, discovery, and invocation is aimed at building
a discovery and invocation infrastructure sufficiently
robust to handle the weight of a semantically rich,
decentralized, environment.

3.2.2 MOBY-S: the web services approach

Under the web-service paradigm, data hosts and analysis
services publish their ability to transact data services,
including the details of the interface, in machine-readable
format in a centralized registry. Client programs query
the registry in various ways to discover services of
interest, and execution of the service can be automated.
An example of this paradigm is the UDDI registry, which
has a highly business-oriented API, and may be becoming
the standard for B2B transactions [18].

The MOBY-S (MOBY-Services) branch of the
BioMOBY project is another example of a web-services
approach. Unlike UDDI, the MOBY-S registry uses
ontologies to determine the structure and relationships
between data-types and services, leveraging this to
enhance service discovery. Data Classes in MOBY-S are
described in Resource Description Framework (RDF)-like
graphs, and are typically represented as an XML
serialization of that graph. Since every sub-component of

Proceedings of the Virtual Conference on Genomics and Bioinformatics

 20

a Class is itself defined in the ontology, the problem of
data-type decomposition and rearrangement (discussed in
section 5.6 and 5.8) becomes trivial. Further, since the
relationship between input and output data-types are
ontologically defined, the registry can also be used to
discover service "pipelines" in which the output of one
service is directly applied as input to the next service.

4. S-MOBY: SEMANTIC MOBY

The architectural design specifications for S-MOBY are
still under development and shall be published elsewhere.
Here, we describe some of the motivation for the design
and outline its general direction.

4.1 A RESTful world

In a ìclosed-worldî, such as the traditional OO (Object
Oriented) development/usage environment of compiled
and linked modules, a development group can employ a
set of best practices to maintain and evolve code.
Encapsulation, strict interface/implementation separation,
publishing interface descriptions, and a judicious use of
deprecation are all practices that can aid maintainability
and evolvabilty. Code discipline is required because the
power of interfaces lies in their ability to push run-time
errors to compile time: classes that do not implement
method signatures as declared are rejected by the compiler
at a well-defined point in the development cycle, and thus
compilers use failure to enforce interface contracts. The
advantage of this is encapsulation with all its benefits, but
the cost is a fragility and rigidity placed on interfaces and
their sub-classes. Changing an interface, for example by
adding, deleting, or changing a method signature,
simultaneously invalidates all dependent implementations
upon recompilation. The vulnerability of a system to
interface mutability is evident even in non-OO settings:
for example changing the syntax requirement on an HTTP
GET query string can simultaneously break thousands of
third-party scripts accessing the site [15]. This fragility of
the GET query string syntax to mutability makes it
operationally non-scalable.

An alternative to the interface mutability problem is
addressed in embracing the realities of an ìopen worldî; a
world where change is as ubiquitous as consensus is
elusive. Architectural emphasis is placed on achieving
robustness in light of partial and/or asymmetrical and
changing information. This is often done through various
mechanisms of loose-coupling and late-binding. An
example of late-binding is when a provider examines the
properties of a service call (including its input parameters)
at invocation and at that time determines suitability. The
key to robustness is not that fragility is reduced by

delaying validity checking to invocation time per se, but
that suitability of purpose may be determined at
invocation in ways that may not be determinable at a prior
registration time.

The open world is exemplified in the web itself. S-
MOBY relies heavily on the web as an architectural
paradigm for an open world problem space [2, 19]. This
means universal resource identification, or the use of
URIsóand more specifically URLsófor data and service
definitions; the use of hyperlinking as a method for the
construction of complex resources from other resources;
the exchange of representations of resources via the
dereferencing of URIs; and the use of a minimal method
set such as used by HTTP. S-MOBY is not tied to HTTP,
though it does recognize it as the de facto protocol of the
web. These characteristics of the web are identified as the
architectural style REST (Representational State Transfer
[6]). Key to this architectural style is the treatment of both
data and services as resources under a universal locating
scheme.

4.2 Web of ontologies

To build resources, that is, to allow data and services to
define themselves via a set of properties or assertions, S-
MOBY uses a Resource Description Framework (RDF
[20]) based technology. S-MOBY seeks to place
BioMOBY within the web itself, and not merely to use the
web as a messaging layer. Thus resource descriptions will
ascribe to W3 standards (e.g., RDF/RDF-S/Web Ontology
Languages (OWL)[21]) and are fully available to
BioMOBY-ignorant manipulation. While the scope of
BioMOBY is significantly less than the semantic web
(BioMOBY aims to achieve a shared syntax, shared
semantic, and discovery infrastructure suitable for
bioinformatics), the aim of placing S-MOBY within the
web means that we seek a minimally enabling technology
so as to maximize its interoperability with other efforts.
Most notably are efforts in ontology construction and
description logics (e.g. those of Borgida, A. [3];
Horrocks, I. [10] Wroe C, et al. [23]). This means that we
evaluate the W3 stack of technologies (RDF, RDF-S,
OWL-Lite, OWL-DL, OWL-Full) against S-MOBYís
requirements [14] choosing the least complicated
technology and then supporting it in full. A subsumption
requirementóand many othersóargue for the use of
RDF-S over RDF, and similarly equivalency argues for
OWL-Lite over RDF-S. The guarantee of maximum
expressiveness and computational completeness of OWL-
Lite and OWL-DL is likely to preclude OWL-Full (where
there is no guarantee). Thus a decision between OWL-Lite
and OWL-DL will be based primarily on an evaluation of

Proceedings of the Virtual Conference on Genomics and Bioinformatics

 21

the necessity for the arbitrary cardinality and Boolean
expressions of OWL-DL.

Given a minimally enabling technology, data and services
describe themselves in RDF-based documents; documents
which include sanctioning, subsumption, and equivalency
assertions. The web of these hyperlinked documents
creates a web of ontologies. Hyperlinking, as a key
RESTful feature of how data and services define
themselves, allows certain sites to become de facto
community standards. For example, SGD
(www.yeastgenome.org), TAIR (www.arabidopsis.org),
and WormBase (www.wormbase.org) may each offer
community-specific data definitions and services for
yeast, Arabidopsis, and C. elegans respectively, while still
sharing definitions and not precluding others from
extending them. At any one time, more or less of the
larger ontology is available to reasoning engines. These
reasoning engines comprise the indexing algorithms for
the discovery servers.

4.3 Discovery in S-MOBY

Discovery servers allow clients to engage providers by
returning URLs for services that meet the clientsí domain,
range, and description criteria. Because of
incompleteness and inconsistencies inherent in any open
world ontology, discovery servers do not guarantee that
all possible matches are returned. Neither do they even
guarantee that a returned match is valid. What they
should do is return matches that were valid at the time
they reasoned on their traversal or caching of the web. In
this manner, they act as semantically-aware search
engines, yet are susceptible to the problems of stale caches
and 404 errors like current text-based search engines.
Users may choose competitively between discovery
services based on their reliability and suitability for
purpose. BioMOBY will provide one such service, which
will operationally satisfy the final combination of S-
MOBY and MOBY-S functional constraints.

4.4 Semantic negotiation

Meaning is established at the transaction level. Any
individual is free to publish an RDF-based definition
document describing a data or service type (e.g.,
MySequence, or MyBLAST). Common vocabularies are
boot-strapped by community authorities, such as SGD,
TAIR, and WormBase. Clients and providers
communicate through this middle-layer vocabulary,
resorting to more specific, less common vocabulariesó
i.e., jargonóas demanded by the trade-off between
exactness and clarity. Because hyperlinks are static, one-
way links, predicates such as rdfs:subClassOf between
subject and object resources are simply assertions, which

may or may not be true at the time of dereferencing.
Thus as clients and providers map and unmap their private
data to and from public ontologies, their level of
confidence in this mapping is related to the stability and
authenticity of the transaction participants. This
segregates issues of authenticity out of semantic
negotiation per se, allowing them to be addressed either
with additional RDF constructs or with completely
different technologies.

4.5 Status of S-MOBY

As part of BioMOBY, S-MOBY has published Use Case,
a Technology Assessment, and Requirements documents
available at www.biomoby.org. We are currently writing
the Design document, and are on schedule for the
deployment of a prototypical implementation by Fall,
2004.

5. MOBY-S: MOBY SERVICES

MOBY-S extends the traditional web-services paradigm
by applying ontologies to both the data, and the
description of the transformation applied to the data
during service execution, thus allowing the registry to
analyze ìintentî of the incoming query, and in so doing
enhance the number of services discovered.

5.1 The MOBY-S API

The data-type (Class) ontology consists of nodes
representing various data Classes, and vertices
representing one of three relationship types ñ "ISA",
"HASA", and "HAS" (Figure 1). These are stored in a
relational database in practice, but may also be
represented as an RDF document. The ISA relationship
indicates that, in the subject-predicate-object assertion, the
subject Class inherits from the object Class
(DNA_Sequence ISA Nucleotide_Sequence); all
attributes of the latter are present in the former. The
HASA and HAS relationships indicate a container-type
association between the subject and object; HASA
indicates a cardinality of "one", while HAS indicates a
cardinality of "one or more". It is through these latter two
relationships that MOBY-S objects can derive additional
complexity. While the ISA inheritance alone does not
alter the "structure" of the Class, it does change the
semantic meaning of the data contained by that class to be
of a more specific type. Conversely, HASA and HAS
relationships allow the derivation of a new Class which
both inherits from a more basic Class, and extends that
Class by encapsulating other Class types in one or more
copies.

Proceedings of the Virtual Conference on Genomics and Bioinformatics

 22

Object

Nucleotide
Sequence Virtual

Sequence

String

Integer

ISA

ISA
ISA

ISA

HAS-A

HAS-A

DNA
Sequence

RNA
Sequence

ISA
ISA

text/plain
text/html

ISA

ISA

text/base64 ISA base64_gifISA

Figure 1. A portion of the RDF graph of MOBY-S Classes. All
objects inherit directly or indirectly from the base ìObjectî
Class via ISA relationships, and complex Classes are derived
through combinatorial HAS and HASA relationships.

In BioMOBY, data "entities" (an "entity" is any piece of
data that can be identified by a single ID number) are cast
into one Class or another depending on what subset of the
"entity" is desired at any given time. As shown in Figure
1, all objects are rooted in the base class "Object" by ISA
relationships.

The RDF Class definition is serialized into XML for the
purpose of service transaction. The base Class "Object"
has a very simple XML structure. It consists of a single
element, named according to the Class, and three
attributes, only two of which ñ "namespace" and "id" - are
required:

 <Object namespace=" " id=" "/>.

The third, optional, attribute is named "articleName", and
is used when a service requires named inputs, and/or to
identify different sub-components of complex Classes, as
discussed below.

The "namespace" and "id" attributes together are
sufficient to identify any data entity on the Internet, and
combined with the Class name, form the "MOBY-S
Triple". The MOBY-S Triple thus purports to carry three
crucial pieces of information. The identifier for a piece of
data, the naming scheme under which that identifier
should be interpreted, and the Class into which the data
referred to by the identifier is going to be cast. For
example:

 <Object namespace=íNCBI_gií id=í163483í/>

refers to the record ë163483í within NCBIís gi
namespace, and we are casting this record as a base
Object (i.e. just the identifier). All namespaces are

defined by a controlled vocabulary based on the Gene
Ontology Cross-reference Abbreviations [7].

While conceptually similar to the Life Sciences Identifier
(LSID [11]) in its intent, the MOBY-S Triple differs from
the LSID in a number of ways. Most importantly, LSID's
are meant to be completely opaque until they are resolved.
As such, it is not possible to determine what "type" of data
an LSID represents via simple examination of the LSID
URI string. Clearly, however, individual web-service
providers will only be capable of operating on certain
types of data. Given this limitation, and since LSID's are
not yet widely used, with few public LSID resolver
services, it is impractical at this time for the BioMOBY
system to be required to be dependent on LSID resolution.
Thus, the "namespace" component of the Triple defines
the naming system (~data type) within which the "id" is
valid, and the two are always passed as a unit. Note that
there is a potential pitfall to this approach.

It is only by convention that most data hosts associate
particular identifier namespaces with specific data types,
but this is not enforceable, and in some cases already
breaks down. For example, the "gi" namespace from
NCBI contains the identifiers for records of three
conceptually different data types: DNA, RNA, and Amino
Acid sequence. Thus the moby:NCBI_gi namespace
alone is insufficient to precisely define the data-type that
the Triple refers to. In this sense, the MOBY-S Triple is
not as powerful as the LSID/Resolver system.
Nevertheless, like the LSID, the Triple is sufficient to
avoid naming clashes, a critical achievement for
successful data integration [16]. Moreover, there is little
fundamental difference between the two approaches, thus
as LSID's become more widely accepted it is possible that
MOBY-S will adopt the LSID standard in place of or as
well as the namespace/id tuple. Indeed, the MOBY-S
Central registry internally represents all Class, Service,
and Namespace identifiers as LSIDís, and these LSIDís
may be used in registry queries. In addition, we provide an
LSID resolver providing metadata for LSIDís representing
MOBY-S service instances, so there is already extensive
cooperation between these two projects.

Though it is not pre-defined, there is clearly a relationship
between a namespace, and the subset of Classes into
which that data-type may be cast. A PubMed identifier
might be cast as a Citation object, but could not (sensibly)
be cast as a DNA Sequence object because the data
necessary to create a DNA Sequence object does not exist
in a PubMed record. In contrast, an NCBI_gi identifier
could be cast as either a Sequence object, or a Citation
object, since most Genbank records also contain
authorship information in the submitter fields. This
flexibility allows a highly modularized suite of services to

Proceedings of the Virtual Conference on Genomics and Bioinformatics

 23

be built, where only certain fields of information are
queried/retrieved during a service transaction.

5.2 Primitives in MOBY-S

The simple data objects discussed so far are of limited
value. Clearly it is desirable to pass more complex data
along with the identifiers. As a first step, primitive data-
types such as String, Integer, and Float are cast into their
own MOBY-S Classes, inheriting directly from base
Object, with no HASA relationship to any other Class.
These primitive Classes (and their direct descendents) are
the only object Classes allowed to have Text or CDATA
node content in their XML representation. As such, any
data content in a serialized object that is not itself an
identifier will appear in one of these types of nodes. Since
the Class name itself ("String", "Integer", etc) is not
indicative of the ìintentî or ìmeaningî of the content, the
a human-readable tag "articleName" is added to the
MOBY-S Triple. Thus the length of a VirtualSequence is
indicated in the Integer element with the articleName
"Length" (Figure 2).

Structuring the data this way provides a great deal more
flexibility in service provision, as discussed in section 5.6.
In addition, a set of derived primitives have now been
defined that can be associated with particular types of
viewers. For example, images may be passed in any
inheriting from ìbase64_encoded_imageî (Figure 1), or
HTML markup may be rendered from any descendent of
the ìtext/htmlî Class (which itself inherits from
ìtext/plainî, and thus may also be passed to a plaintext
renderer if an HTML renderer is not available). This
greatly simplifies client design, since the client need not
be aware of every possible data-type, and have specific
rendering engines for each.

<String namespace=' ' id=' '/> <Object namespace='NCBI_gi' id='163483 '/> <Integer namespace=' ' id=' '/>

<VirtualSequence namespace='NCBI_gi' id='163483'>
 <Integer namespace='' id='' articleName='Length'>

975
 </Integer>
</VirtualSequence>

<NucleotideSequence namespace='NCBI_gi' id='163483'>
 <Integer namespace='' id='' articleName='Length'>
 975
 </Integer>
 <String namespace='' id='' articleName='Sequence'>
 ATGG...
 </String>
</NucleotideSequence>

ISA ISA

ISA

ISA

HASA

HASA

Figure 2. The XML serialization of a portion of the RDF graph
in Figure 1 showing how HAS and HASA container-
relationships affect the serialized structure of an object

5.3 Building complex Classes in MOBY-S

Although every MOBY-S Class must have an ISA
relationship (inheriting from the base Object Class
directly or indirectly), this only guarantees that every
object has a namespace and id component. Complex
Classes can be built through the HASA and HAS
relationship types that allow embedded Classes. Figure 2
shows the XML structures corresponding to a few objects
in the sequence hierarchy of object Classes, described in
Figure 1. Virtual Sequence is in an ISA relationship with
the root Object Class, and in a HASA relationship with
the Integer Class. The resulting XML reveals an Integer
object embedded within the VirtualSequence object. A
more complex object, NucleotideSequence is derived
from VirtualSequence (ISA VirtualSequence) but adds an
additional String component (HASA String).

5.4 Cross-references in MOBY-S

To enhance integration of disparate data hosts and
services, an additional block of XML is allowed in every
data Class ñ the CrossReference block. Cross-references
in MOBY-S are commonly provided in the form of base
ìObjectî Class data, acting as pointers to external data
entities. This allows the data provider, as the presumptive
expert, to assume the responsibility of assisting a client in
discovery of related pieces of information rather than
placing that burden on the client-side. This is critical in
light of the interdisciplinary nature of MOBY-S
integrationand e-science in general. A user may not have
the contextual or background knowledge necessary to
interpret the data provided, or make sensible ìnext stepî
choices [8]. Thus, the service provider can offer guidance
by providing a rich set of cross-references along with their
data output.

An Object may contain as many Cross-references as the
service provider sees fit, and they may represent not only
synonyms for the Object, but also tangentially related
pieces of data. In addition, individual sub-components of
an Object may carry their own cross-reference blocks.
Since cross-references themselves are valid MOBY-S
Objects, they may be used verbatim to discover services
providing or operating on related data. Thus the MOBY-
S data-representation system itself provides for an
extensive degree of data integration and interoperability.

5.5 The scope of MOBY-S

Since MOBY-S Objects, in their most simplistic form,
consist only of identifiers, there is no inherent limitation
of MOBY-S to biological data types. As such, it should

Proceedings of the Virtual Conference on Genomics and Bioinformatics

 24

be possible to set up services that move between
traditional biological data and any other data type. For
example, one could envision services that consume allele
names, and return geographic distribution information, or
services that match DNA sequences from crime scenes
with ìmug shotsî or fingerprint data. The MOBY-S
approach could thus be applied to a wide range of
common data discovery and data-sharing problems,
including biological/medical; environmental; business,
civil, criminal and patent law; or even policing and
terrorism.

5.6 Services under MOBY-S

In MOBY-S, service providers accept and respond to
queries through SOAP-RPC. Service interfaces are
minimally defined by the Service Signature: [Input Class],
Transformation Type, [Output Class], URL. Input and
Output Classes may be part of the MOBY-S Class
ontology, or may be LSID's pointing to data
classifications external to the BioMOBY project. In
addition, either the Input or Output Class may be null,
allowing registration (Output null) or simple retrieval
(Input null) services to be created. The service signature
may also be more complex, where the Input and/or Output
is a combination of Classes and/or Class Collections
(lists). In addition, unlike the prototype API, additional
parameters required or provided by the service are
included as part of the service signature; these
ìsecondaryî parameters take the form of named primitive
arguments that may easily be translated into, for example,
HTML form fields.
The Service Ontology governs the ìTransformation Typeî
component of the Service Signature. Like the Class
Ontology, the Service Ontology is a hierarchical graph of
data transformation service types, joined by ISA
relationships, and rooted in a base ìServiceî Class. The
primitive Transformation Type categories of Retrieval,
Registration, Analysis, and Parsing make up the main
branches of the Service Ontology, and more precise
transformation types (e.g. tblastx, or SmithWaterman)
inherit from these.

To build a MOBY-S-compliant service, the service
provider simply chooses appropriate input and output data
Classes from the ontology, identifies what other
parameters are required to transact the service, and selects
or adds a Service Ontology term to describe his
Transformation Type. This signature is then registered as
a new Service Instance in the MOBY-S Central registry
(described below), along with a unique name for this
service and a URI indicating the identity of the service
provider. The script providing the service must accept
SOAP-RPC calls containing serialized data according to

its registered Input data Class. Since the data Classes
exist in an inheritance relationship with one another in one
or more ontologies, it is impossible for the service
provider to know which Class Ontology has been used to
declare this object as being ìvalidî, thus the service
should simply parse the object on the assumption that it is,
or inherits from, the expected Class, and extract the
required information. The service should fail if the Object
is not compliant with the Input Class registered in its
service signature. Similarly, the service provider is not
constrained to generating only the Output Class it has
registered in MOBY-S Central. If sufficient information
exists to produce a more complex child Class the service
provider is encouraged to do so. This should be
transparent on the client side, since a client program
should similarly not validate the data types it is receiving
unless it is sufficiently complex to do so.

The power gained by this approach is remarkable. On the
client side, an in-hand data object may be passed to any
service that accepts that object type, or any parent object
type, in order to transact the service. Similarly, a service
may register itself as providing a more basal data-type
than it actually is able to generate in order to be flexible in
its output, yet accurate in its service signature.

5.6.1 Service providers ìcode of conductî

To achieve the desired level of interoperability while
maintaining the richness of service provision, there are
some guidelines that should be followed by MOBY-S
service providers:

• Avoid creating new data Classes. If it is possible to
represent your data with an existing class, or
combination of classes, do so. This helps assure that
services exist that will take your output data Class as
their input.

• Avoid creating unnecessarily complex data types.
The MOBY-S strategy is to pass only the information
requested by the client, and to prefer ìmodularî data
retrieval over complex data-retrieval. Complexity
should be represented in cross-references rather than
Class structures where possible.

• Provide as many cross-references as possible in the
CrossReference XML block. This is key to enhancing
data integration.

• Do not change your interface. Although it is
discouraged, it is inevitable that some users will hard-

Proceedings of the Virtual Conference on Genomics and Bioinformatics

 25

code their data collection scripts to your published
interface. Thus, it is better to create a new service
than to change an existing one.

• If you must change your interface, de-register and
re-register it in the registry. Not doing so defeats
the purpose of providing MOBY-S-compliant
services!

5.7 The MOBY-S Central registry

The MOBY-S Central registry is surprisingly simplistic ñ
it allows registration, deregistration, and discovery of
Service Instances via their Service Signatures, and
provides a basic interface for manipulating and querying
the Class, Service, and Namespace Ontologies. Service
discovery is accomplished by creating a full or partial
Service Signature, representing the desired Service
Instance, and comparing that to the signatures of
registered services. This is simplified by the fact that the
input and output data types are strictly controlled by the
Class Ontologies, thus the matching of a partial Service
Signature can be done quickly and accurately.

In addition to the service signature, the service provider
may indicate to MOBY-S Central that they are
ìauthoritativeî for the service they are registering. This is
a non-validated way of indicating that the service provider
believes that they provide more accurate or up-to-date
data than service providers who do not claim to be
authoritative. For example, an authoritative service
provider may be the canonical source of a particular data-
set used during service provision, or the
designer/maintainer of an algorithm used to execute the
data analysis and transformation. When querying the
registry, client programs may request that only
authoritative services are discovered, or they can ignore
the authoritative flag and discover all service providers
that can operate on their input data-types.

Finally, the behaviour of MOBY-S Central can be
configured such that it includes information from the
Class and Service Ontologies during the lookup process.
As such, the Client itself need not traverse the Object
ontology; it need only pass the Object Class name to the
registry and request that the registry discover services able
to act on the in-hand data-type, or any parent data type in
the ontology. Similarly, the Client may be conservative in
its request for a particular Transformation Type, and let
the Registry traverse the Service Ontology along all child
types to discover more specific categories within that
Transformation Type.

Upon service discovery, a copy of the full Service
Signature is presented to the client. This carries sufficient
information to allow automated service execution.
However, an additional procedure call is available at
MOBY-S Central that will return a WSDL-like document
that can be used to create ìstubsî on the client side. The
WSDL provided by MOBY-S Central is not entirely
valid; the service provider and client are both allowed to
pass more complex data-types than advertised in the
registry, thus it is impossible, a priori, to describe the
actual structure of the input and output data for a given
service in a WSDL document.

5.8 Clients under MOBY-S

Since the complexity of service discovery and Ontology-
awareness is present in the Registry itself, MOBY-S
Client programs may be trivially simplistic in their design,
consisting of as few as ten lines of Perl code. This
architecture was intentional, as it was anticipated that
MOBY-S Client code should be embedded within more
complex applications, invisibly doing lookups and service
executions in order to gather data for existing standalone
or web-based programs such as ISYS, SRS, Genquire,
Apollo, or any other program designed to display
integrated data.

However, not all object manipulation/interpretation can be
accomplished by the registry. Class Ontology traversal in
MOBY-S Central follows only ISA relationship types,
ignoring HASA and HAS relationships. As such, sub-
components of the data Class are not automatically
included in the Service Signature search. This minor
limitation is, again, by design ñ the intention is that
neither Client nor Service should be required to validate
objects, and should always receive an acceptable Object
without any additional manipulation. If sub-components
were included in the service search, it might then be
necessary for a service to execute object decomposition in
order to operate on incoming data. As such, Object
decomposition (if desired) must be done client-side.
Since all Objects are either primitive, or composed of
primitives, the difficulty of decomposing an Object into its
component parts is negligible ñ every XML element
inside of a serialized Class must, by definition, be a valid
Class itself. As such, even a simple client-side XML
parser can decompose an Object and query the registry
with any/all sub-components in order to discover all
services able to operate on any piece of data within that
Object.

Finally, the Class Ontology simplifies client design in
another way. Since all input/output data types are

Proceedings of the Virtual Conference on Genomics and Bioinformatics

 26

constrained to Class Ontology nodes, it is therefore the
case that the output from one service may be directly
applicable as the input to another service, allowing simple
pipelining of multiple services into a workflow without
intervening data rearrangements.

5.9 Weaknesses of the MOBY-S approach

There are notable weaknesses in the current MOBY-S
approach. Most apparent is that Transformation Types,
although defined in the Service Ontology, are still
described only in human-readable terms. Machine-
readable service description is an extraordinarily difficult
problem, and the BioMOBY project is maintaining
contact with the myGrid project as they explore solutions
to this problem [17]. A second weakness is that all cross-
references are treated equally under the current API. As
such, it is impossible to determine how
directly/tangentially a cross-reference relates to the object
in-hand. Exploration into creation of a cross-reference
relationship type ontology has been initiated. Third, the
use of the articleName attribute as a human readable
description of the content of an object limits, somewhat,
the automated interpretation of data. Finally, MOBY-S
does not circumvent the problem of service providers
irresponsibly changing their interfaces without updating
their MOBY-S registration, registering their interfaces
inaccurately, or producing false or low-quality data. All
of these issues are actively being discussed among the
BioMOBY developers and will be addressed in future API
specifications.

6. CONCLUSION

In the past two decades, the web has become an integral
part of scientific research. However, the enthusiasm of
scientists to exploit this new and powerful tool to publish
their data was not tempered with a well-planned data
sharing architecture. What resulted was a vast pool of
highly specialized, disconnected websites and ever-
evolving database interfaces. As researchers rush to take
advantage of newly emerging technologies such as
ontologies, web-services, and the semantic web, the
BioMOBY project hopes to provide a simple and ready-
made platform to help scientists avoid repetition of these
earlier mistakes. We intend to unite the needs and skills
of biologists with the foresight and planning of
information scientists to ensure that both public and
private research investment achieves its maximum benefit
through the creation of a highly integrated global
biological data space. The BioMOBY project provides an
extensible and flexible choice for data hosts and service

providers to build such integrated systems with minimal
effort and minimal disruption to their existing data
provision activities.

7. ACKNOWLEDGEMENTS

This work is funded by a Genome Canada/Genome Prairie
grant to MDW and NSF grant 0213512 to LS and DDG.
Thanks go to CBR-NRC for graciously donating a server
and bandwidth to the project, to Matthew Links for
ongoing discussions and moral support, and to the brave
individuals who sacrificed their time and effort during the
prototype phase of the MOBY-S project; in particular
Heiko Schoof, Lukas Mueller and his colleagues at TAIR,
Midori Harris and the Gene Ontology Consortium, Jason
Stewart, and Chris Mungall and colleagues at flybase.
Special thanks go to William Crosby for supporting
BioMOBY at its birth. We also acknowledge and thank
Fiona Cunningham, Shuly Avraham, Ken Stuebe, and Peter
Steadman through helpful discussions and other contributions.

8. REFERENCES

[1] Berners-Lee, T. 1998 What the Semantic Web can
represent. http://www.w3.org/DesignIssues/RDFnot.html

[2] Berners-Lee, T., Cailliau R., Groff, J.F., Pollermann,
B. 1992. World-Wide Web: The information universe.
Electronic Networking: Research, Applications and
Policy, 1(2), 74-82.

[3] Borgida, A. 1995 Description logics in data
management. IEEE Transactions on Knowledge and Data
Engineering. 7: 671-682.

[4] Cancer Gene WNT1.
http://caroll.vjf.cnrs.fr/cancergene/CG101.html

[5] CHAART Projects.
http://geo.arc.nasa.gov/esdstaff/health/bydisease.html

[6] Fielding, R. 2000 Architectural styles and the design
of network-based software architectures. Ph.D.
dissertation. University of California, Irvine, 2000.

[7] Gene Ontology Cross-reference Abbreviations List.
http://www.geneontology.org/doc/GO.xrf_abbs

[8] Hendler, J. 2003. Science and the Semantic Web. Science
299: 520-521.

Proceedings of the Virtual Conference on Genomics and Bioinformatics

 27

[9] http://www.google.com/search?q=wingless+locus+hu
man+phenotype

[10] Horrocks, I. 2002. DAML+OIL: a description logic
for the semantic web. IEEE Bull. of the Technical
Committee on Data Engineering, 25(1):4-9.

[11] Interoperable Informatics Infrastructure Consortium
LSID Working Group Homepage.
http://i3c.org/wgr/ta/resources/lsid/docs/index.htm

[12] MOBY Use Cases.
http://www.biomoby.org/twiki/bin/view/TWiki/UseCaseO
verview

[13] Pictorial Atlas of selected mutant flies.
http://biology.arizona.edu/sciconn/lessons2/Geiger/Picpages/Sel
ectedMutant_Fly_Strains.htm

[14] S-MOBY Requirements Document.
www.biomoby.org/S-
MOBY/doc/Requirements/MOBY_Requirements.pdf

[15] Stein, L. 2002. Creating a bioinformatics nation.
Nature 417: 119-120.

[16] Stein, L. 2003. Integrating biological databases. Nat. Rev.
Gen. 4: 337-345.

[17] Stevens, R.D.; Robinson, A.J.; Goble, C.A. 2003.
myGrid: personalised bioinformatics on the information grid.
Bioinformatics. 19 Suppl 1:I302-I304.

[18] UDDI Project Homepage: http://www.uddi.org/

[19] W3C Architecture of the World Wide Web.
www.w3.org/TR/webarch

[20] W3C 2003 Resource Description Framework
(RDF): Concepts and abstract syntax.
www.w3.org/TR/rdf-concepts

[21] W3C 2003 Web Ontology Language. Overview.
www.w3.org/TR/owl-features.

[22] Wilkinson, M.D.; Links, M. 2002. BioMOBY: an open
source biological web services proposal. Briefings in
Bioinformatics 3(4): 331-341.

[23] Wroe, C.; Stevens, R.; Goble, C.; Roberts, A.;
Greenwood, M. 2003. A suite of DAML+OIL Ontologies to
Describe Bioinformatics Web Services and Data. International
Journal of Cooperative Information Systems. 12(2):197-224.

